
Istituto di Scienza e Tecnologie dell'Informazione “A. Faedo”
Software Engineering Laboratory

Antonia Bertolino*, Guglielmo De Angelis*,
Sebastian Elbaum**, Antonino Sabetta*

* [bertolino,deangelis,sabetta]@isti.cnr.it ISTI-CNR, Pisa, Italy
** elbaum@cse.unl.edu Univ. of Nebraska, Lincoln, USA

Engineering of Software Services for Pervasive Environments
(ESSPE '07)

Dubrovnik, September 4, 2007

Scaling-up SLA Monitoring in Scaling-up SLA Monitoring in
Pervasive EnvironmentsPervasive Environments

 SOFTWARE ENGINEERING LABORATORY

Motivation and Context

» To enable QoS management in
pervasive systems

» To check SLAs and to report
violations in an efficient and timely
manner

 SOFTWARE ENGINEERING LABORATORY

Example scenario

» Fraud detection services (FDS):
» For online sellers: to detect suspicious

transactions and illegitimate payments
» For buyers: to verify that sellers can be

trusted (e.g. items sold are authentic)

» Different types of service requests, depth
of checks, users, locations

 SOFTWARE ENGINEERING LABORATORY

Example scenario

» Services accessed through many different
pervasive devices

» Clients may have different profiles and QoS
requirements

» SLAs can be complex, and possibly involve
application-specific conditions

» QoS level, which would otherwise be fine,
might suffer just because we are monitoring it

Requests coming from users
of class GOLD who have been registered

for more than a year and have used the service
less than 10 times in the last hour

must be served in less than 1500ms.

 SOFTWARE ENGINEERING LABORATORY

Checking SLAs is
not weightless!

?

how many clients
we can't afford serving
because we are busy
monitoring (irrelevant events)?

 SOFTWARE ENGINEERING LABORATORY

Different clients,
different “distance from violation”

clients

QoS
metric
X

time=t1

 SOFTWARE ENGINEERING LABORATORY

Different clients,
different “distance from violation”

clients

QoS
metric
X

time=t2

 SOFTWARE ENGINEERING LABORATORY

Different clients,
different “distance from violation”

clients

QoS
metric
X

time=t3

 SOFTWARE ENGINEERING LABORATORY

Different clients,
different “distance from violation”

clients

QoS
metric
X

time=t4

 SOFTWARE ENGINEERING LABORATORY

Different clients,
different “distance from violation”

clients

QoS
metric
X

time=t5

 SOFTWARE ENGINEERING LABORATORY

A smarter way
to do SLA checking

Key idea
Goal of monitoring: to reveal SLA violations

» Ideally, at a given instant:
» Monitor only the interactions for which

violations occur
» Ignore (=don't log, don't check) all the others

 SOFTWARE ENGINEERING LABORATORY

A smarter way
to do SLA checking

» Dedicate more attention to
interactions that are more likely to
violate an SLA

» Reduce checking activity for
interactions that are far from violation

» Shift SLA-checking effort dynamically
and automatically to save resources

 SOFTWARE ENGINEERING LABORATORY

Different clients,
different “distance from violation”

clients

QoS
metric
X

time=t5

 SOFTWARE ENGINEERING LABORATORY

analyze every event

How Opportunistic SLA
Checking works

discard more

discard some events

T2T1

 SOFTWARE ENGINEERING LABORATORY

Standard SLA checking
infrastructure

 SOFTWARE ENGINEERING LABORATORY

Opportunistic SLA checking
infrastructure

 SOFTWARE ENGINEERING LABORATORY

Prototype behaviour

 SOFTWARE ENGINEERING LABORATORY

Discussion

Approach assumes that:
» QoS fluctuations are slow enough to

enable prediction
» There is enough variability among clients

(service requested, usage profiles, SLAs)

 SOFTWARE ENGINEERING LABORATORY

Discussion

» Different optimization goals:
» Save storage (!)

» Always possible, with considerable gain if
missing some violations is not a problem

» Save CPU utilization (?)
» Only if the checks are heavy (complex SLAs)

» Trade-off between efficiency and
accuracy

 SOFTWARE ENGINEERING LABORATORY

Challenges and opportunities

» The sampling mechanism does have
an (albeit light) overhead
» If just simple checks are needed, the overhead

may exceed the optimization obtained by sampling

» Optimize resource consumption:
» Approach reduces the use of storage
» May also reduce cpu load

» Application-specific constraints can
be heavier to verify; checking them
may be well worth optimizing

 SOFTWARE ENGINEERING LABORATORY

Summary

» Goal: to scale-up the ability to
check complex SLAs

» Approach: leverage users'
variability to save resources by
shifting the attention to the
interactions that are more critical
(i.e. closer to violation)
» Trade-off: observe as many violations as

possible, saving as much as possible on
resources

 SOFTWARE ENGINEERING LABORATORY

Open Issues

» For the Opportunistic SLA Checking
approach:

» Analyze the tradeoffs associated with the sampling
overhead

» Identify classes of SLAs (or SLA clauses) for which an
opportunistic approach is feasible/advantageous

» Develop support to leverage OSLAC for violation
isolation and regression testing activities

» For QoS monitoring in general:
» How to devise monitoring infrastructures that are

effective and timely, but do not interfere with the very
QoS of the services they are meant to monitor

