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Motivation and Context 

» To enable QoS management in 
pervasive systems

» To check SLAs and to report 
violations in an efficient and timely 
manner
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Example scenario

» Fraud detection services (FDS):
» For online sellers: to detect suspicious 

transactions and illegitimate payments
» For buyers: to verify that sellers can be 

trusted (e.g. items sold are authentic)

» Different types of service requests, depth 
of checks, users, locations 
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Example scenario

» Services accessed through many different 
pervasive devices

» Clients may have different profiles and QoS 
requirements

» SLAs can be complex, and possibly involve 
application-specific conditions

» QoS level, which would otherwise be fine, 
might suffer just because we are monitoring it

Requests coming from users
of class GOLD who have been registered

for more than a year and have used the service
less than 10 times in the last hour

must be served in less than 1500ms.
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Checking SLAs is
not weightless!

?

how many clients
we can't afford serving
because we are busy
monitoring (irrelevant events)?
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Different clients,
different “distance from violation”
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A smarter way
to do SLA checking

Key idea
Goal of monitoring: to reveal SLA violations

» Ideally, at a given instant:
» Monitor only the interactions for which 

violations occur
» Ignore (=don't log, don't check) all the others
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A smarter way
to do SLA checking

» Dedicate more attention to 
interactions that are more likely to 
violate an SLA

» Reduce checking activity for 
interactions that are far from violation

» Shift SLA-checking effort dynamically 
and automatically to save resources
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analyze every event

How Opportunistic SLA 
Checking works

discard more

discard some events

T2T1
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Standard SLA checking 
infrastructure
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Opportunistic SLA checking 
infrastructure
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Prototype behaviour
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Discussion

Approach assumes that:
» QoS fluctuations are slow enough to 

enable prediction
» There is enough variability among clients 

(service requested, usage profiles, SLAs)
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Discussion

» Different optimization goals:
» Save storage (!)

» Always possible, with considerable gain if 
missing some violations is not a problem

» Save CPU utilization (?)
» Only if the checks are heavy (complex SLAs)

» Trade-off between efficiency and 
accuracy
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Challenges and opportunities

» The sampling mechanism does have 
an (albeit light) overhead
» If just simple checks are needed, the overhead 

may exceed the optimization obtained by sampling

» Optimize resource consumption:
» Approach reduces the use of storage
» May also reduce cpu load

» Application-specific constraints can 
be heavier to verify; checking them 
may be well worth optimizing
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Summary

» Goal: to scale-up the ability to 
check complex SLAs

» Approach: leverage users' 
variability to save resources by 
shifting the attention to the 
interactions that are more critical 
(i.e. closer to violation)
» Trade-off: observe as many violations as 

possible, saving as much as possible on 
resources
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Open Issues

» For the Opportunistic SLA Checking 
approach:

» Analyze the tradeoffs associated with the sampling 
overhead

» Identify classes of SLAs (or SLA clauses) for which an 
opportunistic approach is feasible/advantageous

» Develop support to leverage OSLAC for violation 
isolation and regression testing activities

» For QoS monitoring in general:
» How to devise monitoring infrastructures that are 

effective and timely, but do not interfere with the very 
QoS of the services they are meant to monitor


